SenticGCNBertConfig¶
-
class
SenticGCNBertConfig
(embed_dim: int = 300, hidden_dim: int = 768, max_seq_len: int = 85, polarities_dim: int = 3, dropout: float = 0.3, loss_function: str = 'cross_entropy', **kwargs)[source]¶ This is the configuration class to store the configuration of a
SenticBertGCNModel
. It is used to instantiate a SenticBertGCNModel network according to the specific arguments, defining the model architecture.- Parameters
embed_dim (
int
, defaults to 300) – The input dimension for the LSTM layerhidden_dim (
int
, defaults to 768) – The embedding dimension size for the Bert model as well as GCN dimension.max_seq_len (
int
, defaults to 85) – The max sequence length to pad and truncate.dropout (
float
, defaults to 0.3) – Dropout percentage.polarities_dim (
int
, defaults to 3) – Size of output dimension representing available polarities (e.g. Positive, Negative, Neutral).loss_function (
str
, defaults to ‘cross_entropy’) – Loss function for training/eval.
Example
from sgnlp.models.sentic_gcn import SenticGCNBertConfig
# Initialize with default values config = SenticGCNBertConfig()