Source code for sgnlp.models.sentic_gcn.config

from transformers import PretrainedConfig, BertConfig


[docs]class SenticGCNConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~sgnlp.models.sentic_gcn.modeling.SenticGCNModel`. It is used to instantiate a SenticGCNModel network according to the specific arguments, defining the model architecture. Args: embed_dim (:obj:`int`, defaults to 300): Embedding dimension size. hidden_dim (:obj:`int`, defaults to 300): Size of hidden dimension. dropout (:obj:`float`, defaults to 0.3): Droput percentage. polarities_dim (:obj:`int`, defaults to 3): Size of output dimension representing available polarities (e.g. Positive, Negative, Neutral). loss_function (:obj:`str`, defaults to 'cross_entropy'): Loss function for training/eval. Example: from sgnlp.models.sentic_gcn import SenticGCNConfig # Initialize with default values config = SenticGCNConfig() """ def __init__( self, embed_dim: int = 300, hidden_dim: int = 300, polarities_dim: int = 3, dropout: float = 0.3, loss_function: str = "cross_entropy", **kwargs ) -> None: super().__init__(**kwargs) self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.dropout = dropout self.polarities_dim = polarities_dim self.loss_function = loss_function
[docs]class SenticGCNBertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~sgnlp.models.sentic_gcn.modeling.SenticBertGCNModel`. It is used to instantiate a SenticBertGCNModel network according to the specific arguments, defining the model architecture. Args: embed_dim (:obj:`int`, defaults to 300): The input dimension for the LSTM layer hidden_dim (:obj:`int`, defaults to 768): The embedding dimension size for the Bert model as well as GCN dimension. max_seq_len (:obj:`int`, defaults to 85): The max sequence length to pad and truncate. dropout (:obj:`float`, defaults to 0.3): Dropout percentage. polarities_dim (:obj:`int`, defaults to 3): Size of output dimension representing available polarities (e.g. Positive, Negative, Neutral). loss_function (:obj:`str`, defaults to 'cross_entropy'): Loss function for training/eval. Example: from sgnlp.models.sentic_gcn import SenticGCNBertConfig # Initialize with default values config = SenticGCNBertConfig() """ def __init__( self, embed_dim: int = 300, hidden_dim: int = 768, max_seq_len: int = 85, polarities_dim: int = 3, dropout: float = 0.3, loss_function: str = "cross_entropy", **kwargs ) -> None: super().__init__(**kwargs) self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.max_seq_len = max_seq_len self.dropout = dropout self.polarities_dim = polarities_dim self.loss_function = loss_function
[docs]class SenticGCNEmbeddingConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~SenticGCNEmbeddingModel`. It is used to instantiate a SenticGCN Embedding model according to the specified arguments, defining the model architecture. Args: PretrainedConfig (:obj:`PretrainedConfig`): transformer :obj:`PretrainedConfig` base class """ def __init__(self, vocab_size: int = 17662, embed_dim: int = 300, **kwargs) -> None: super().__init__(**kwargs) self.vocab_size = vocab_size self.embed_dim = embed_dim
[docs]class SenticGCNBertEmbeddingConfig(BertConfig): """ This is the configuration class to store the configuration of a :class:`~SenticGCNBertEmbeddingModel`. It is used to instantiate a SenticGCN Bert Embedding model according to the specified arguments, defining the model architecture. Args: BertConfig (:obj:`BertConfig`): transformer :obj:`BertConfig` base class """ def __init__(self, **kwargs) -> None: super().__init__(**kwargs)