SenticGCNEmbeddingModel¶
-
class
SenticGCNEmbeddingModel
(config: sgnlp.models.sentic_gcn.config.SenticGCNEmbeddingConfig)[source]¶ The SenticGCN Embedding Model used to generate embeddings for model inputs. By default, the embeddings are generated from the glove.840B.300d embeddings.
This class inherits from
SenticGCNEmbeddingPreTrainedModel
for weights initalization and utility functions from transformersPreTrainedModel
class.This class can also be constructed via the SenticGCNEmbeddingModel.build_embedding_matrix class method.
- Parameters
config (
SenticGCNEmbeddingConfig
) – Model configuration class with all parameters required for the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Use thefrom_pretrained
method to load the model weights.
-
classmethod
build_embedding_model
(word_vec_file_path: str, vocab: Dict[str, int], embed_dim: int = 300)[source]¶ This class method is a helper method to construct the embedding model from a file containing word vectors (i.e. GloVe) and a vocab dictionary.
- Parameters
word_vec_file_path (str) – file path to the word vectors
vocab (Dict[str, int]) – vocab dictionary consisting of words as key and index as values
embed_dim (int, optional) – the embedding dimension. Defaults to 300.
- Returns
return an instance of SenticGCNEmbeddingModel
- Return type
-
forward
(token_ids: torch.Tensor) → torch.Tensor[source]¶ Encode input token ids using word embedding.
- Parameters
token_ids (torch.Tensor) – Tensor of token ids with shape [batch_size, num_words]
- Returns
return Tensor of embeddings with shape (batch_size, num_words, embed_dim)
- Return type
torch.Tensor