Source code for sgnlp.models.rumour_detection_twitter.config

from transformers import PretrainedConfig


[docs]class RumourDetectionTwitterConfig(PretrainedConfig): """ This is the configuration class to store the configuration of :class:`~RumourDetectionTwitterModel`. It is used to instantiate a Rumour Detection model. Args: num_classes (:obj:`int`, optional): number of classers predicted by the model. Defaults to 4. max_vocab (:obj:`int`, optional): vocabulary size. Defaults to 15000. emb_dim (:obj:`int`, optional): size of each token embedding vector. Defaults to 300. """ def __init__( self, num_classes=4, max_vocab=15000, emb_dim=300, num_structure_index=5, include_key_structure=True, include_val_structure=True, word_module_version=4, post_module_version=3, train_word_emb=False, train_pos_emb=False, size=100, interval=10, include_time_interval=True, max_length=35, max_tweets=339, d_model=300, dropout_rate=0.3, ff_word=True, num_emb_layers_word=2, n_mha_layers_word=2, n_head_word=2, ff_post=True, num_emb_layers=2, n_mha_layers=12, n_head=2, d_feed_forward=600, gpu=False, gpu_idx=[0], main_gpu=[0], initializer_range=0.02, loss="cross_entropy", **kwargs ): super().__init__(**kwargs) self.num_classes = num_classes self.max_vocab = max_vocab self.emb_dim = emb_dim self.num_structure_index = num_structure_index self.include_key_structure = include_key_structure self.include_val_structure = include_val_structure self.word_module_version = word_module_version self.post_module_version = post_module_version self.train_word_emb = train_word_emb self.train_pos_emb = train_pos_emb self.size = size # number of bins for the time embeddings self.interval = interval # time embedding interval size (unsure of units) self.include_time_interval = include_time_interval self.max_length = max_length self.max_tweets = max_tweets self.d_model = d_model self.dropout_rate = dropout_rate self.ff_word = ff_word self.num_emb_layers_word = num_emb_layers_word self.n_mha_layers_word = n_mha_layers_word self.n_head_word = n_head_word self.ff_post = ff_post self.num_emb_layers = num_emb_layers self.n_mha_layers = n_mha_layers self.n_head = n_head self.d_feed_forward = d_feed_forward self.initializer_range = initializer_range self.loss = loss # TODO: to move these parameters outside of the model config and into the training args self.gpu = gpu self.gpu_idx = gpu_idx self.main_gpu = gpu_idx