Source code for sgnlp.models.rst_pointer.config

from transformers import PretrainedConfig


[docs]class RstPointerSegmenterConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~sgnlp.models.rst_pointer.modeling.RstPointerSegmenterModel`. It is used to instantiate a discourse segmenter pointer network according to the specified arguments, defining the model architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: word_dim (:obj:`int`, defaults to 1024): Word embedding dimension size. hidden_dim (:obj:`int`, defaults to 64): Hidden dimension zie. dropout_prob (:obj:`float`, defaults to 0.2): Dropout probability. use_bilstm (:obj:`bool`, defaults to :obj:`True`): Whether to use bilstm layer. num_rnn_layers (:obj:`int`, defaults to 6): Number of RNN layers. rnn_type (:obj:`str`, defaults to "GRU"): RNN type. Supported choices: ["LSTM", "GRU"]. is_batch_norm (:obj:`bool`, defaults to True): Whether to use batch normalization. elmo_size (:obj:`bool`, defaults to "Large"): Elmo size. Supported choices: ["Large", "Medium", "Small"]. Example:: from sgnlp.models.rst_pointer import RstPointerSegmenterConfig # Initialize with default values config = RstPointerSegmenterConfig() """ def __init__( self, word_dim=1024, hidden_dim=64, dropout_prob=0.2, use_bilstm=True, num_rnn_layers=6, rnn_type="GRU", is_batch_norm=True, elmo_size="Large", **kwargs ): super().__init__(**kwargs) self.word_dim = word_dim self.hidden_dim = hidden_dim self.dropout_prob = dropout_prob self.use_bilstm = use_bilstm self.num_rnn_layers = num_rnn_layers self.rnn_type = rnn_type self.is_batch_norm = is_batch_norm self.elmo_size = elmo_size
[docs]class RstPointerParserConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~sgnlp.models.rst_pointer.modeling.RstPointerParserModel`. It is used to instantiate a discourse parser pointer network according to the specified arguments, defining the model architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: word_dim (:obj:`int`, defaults to 1024): Word dimension size. hidden_size (:obj:`int`, defaults to 64): Hidden dimension size. decoder_input_size (:obj:`int`, defaults to 64): Decoder input size. atten_model: (:obj:`str`, defaults to "Dotproduct"): Attention type. Supported choices: ["Dotproduct", "Biaffine"]. classifier_input_size (:obj:`int`, defaults to 64): Classifier input size. classifier_hidden_size (:obj:`int`, defaults to 64): Classifier hidden size. highorder (:obj:`bool`, defaults to False): Whether to incorporate higher order information. classes_label (:obj:`int`, defaults to 39): Number of classes to predict for. classifier_bias (:obj:`bool`, defaults to True): Whether to use bias for classifier. rnn_layers (:obj:`int`, defaults to 6): Number of RNN layers. dropout_e (:obj:`float`, defaults to 0.33): Dropout rate for encoder layer. dropout_d (:obj:`float`, defaults to 0.5): Dropout rate for decoder layer. dropout_c (:obj:`float`, defaults to 0.5): Dropout rate for classifier layer. elmo_size (:obj:`bool`, defaults to "Large"): Elmo size. Supported choices: ["Large", "Medium", "Small"]. Example:: from sgnlp.models.rst_pointer import RstPointerParserConfig # Initialize with default values config = RstPointerParserConfig() """ def __init__( self, word_dim=1024, hidden_size=64, decoder_input_size=64, atten_model="Dotproduct", classifier_input_size=64, classifier_hidden_size=64, highorder=False, classes_label=39, classifier_bias=True, rnn_layers=6, dropout_e=0.33, dropout_d=0.5, dropout_c=0.5, elmo_size="Large", **kwargs ): super().__init__(**kwargs) self.word_dim = word_dim self.hidden_size = hidden_size self.decoder_input_size = decoder_input_size self.atten_model = atten_model self.classifier_input_size = classifier_input_size self.classifier_hidden_size = classifier_hidden_size self.highorder = highorder self.classes_label = classes_label self.classifier_bias = classifier_bias self.rnn_layers = rnn_layers self.dropout_e = dropout_e self.dropout_d = dropout_d self.dropout_c = dropout_c self.elmo_size = elmo_size